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EXPLICIT INVERSIVE CONGRUENTIAL PSEUDORANDOM 
NUMBERS WITH POWER OF TWO MODULUS 

JURGEN EICHENAUER-HERRMANN AND KATJA ICKSTADT 

ABSTRACT. An explicit version of the inversive congruential method with power 
of two modulus for generating uniform pseudorandom numbers is introduced. 
Statistical independence properties of the generated sequences are studied by 
means of the serial test. The method of proof relies on a detailed analysis of 
certain exponential sums. 

1. INTRODUCTION 

Several nonlinear congruential methods of generating uniform pseudorandom 
numbers in the interval [0, 1) have been introduced and analyzed in the last few 
years. A review of the development of this important area is given in the survey 
articles [3, 4, 16-18, 20-22] and in H. Niederreiter's excellent monograph [19]. 
The most promising approach is the inversive congruential method, which is 
typically considered with respect to a prime modulus (cf. [1, 5, 7, 11, 14, 15]) 
or a power of two modulus (cf. [2, 6, 8, 9, 14]). The latter case is studied in 
the present paper. 

Let m = 20 for an integer wo > 5. An inversive congruential sequence 
(Yn)n>o is usually defined by the recursion Yn+ Iay 1 + b (mod m), where a 
and b are integers with a =1 (mod 4) and b 2 (mod 4) and y -I denotes 
the multiplicative inverse of Yn modulo m. In the present paper an explicit 
version of this inversive congruential method is introduced and studied. This 
approach is motivated by very attractive results for an explicit version of the 
inversive congruential method with prime modulus (cf. [7, 21, 22]). In the 
following let Zn = {0, 1, .I . , n - 1} for integers n > 2, and write ZE for the 
set of all odd integers in ZE. For integers a e Zm with a _ 2 (mod 4) and 
b e ZE an explicit inversive congruential sequence (Yn)n>o of elements of ZE 
is defined by 

Yn-(an + b)- 1 (mod m), n > 0. 

A sequence (xn)n>o of explicit inversive congruential pseudorandom numbers 
in the interval [0, 1) is obtained by xn = Yn/m for n > 0. It follows 
at once from the condition a- 2 (mod4) that any explicit inversive con- 
gruential sequence is purely periodic with maximal period length m/2, i.e., 
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{YO, YI *-- , Ym/2-1} = Em, which guarantees that the corresponding pseudo- 
random numbers are equidistributed in one dimension. 

Statistical independence properties of pseudorandom numbers are very im- 
portant for their application in a stochastic simulation. A reliable theoretical 
test for statistical independence is the serial test, which employs the discrep- 
ancy of k-tuples of successive pseudorandom numbers. For N arbitrary points 
to, tl, ... , tNl e [O, i)k the discrepancy is defined by 

DN(tO, tl, ... , tN-1) = sup IFN(J) - V(J) I, 
J 

where the supremum is extended over all subintervals J of [O, 1)k, FN(J) is 
N-1 times the number of points among to, tl, ... , tNv 1 falling into J, and 
V(J) denotes the k-dimensional volume of J. For a sequence (Xn)n>o of 
explicit inversive congruential pseudorandom numbers the abbreviations 

Xn= (xN Xn+1 * Xn+k-1) E [0 l)k n > 0 

and 
D( k) - DN(XO, X1, XN-1) 

are used. An explicit inversive congruential generator passes the k-dimensional 
serial test if D(k) is reasonably small. According to the law of the iterated 

logarithm for discrepancies (cf. [12]), D k)2 should be of an order of magni- 
tudem- 1/2, since the discrepancy of N independent and uniformly distributed 
random points from [O, i)k is roughly N-1/2 (log log N)1/2. 

In the present paper, upper and lower bounds for the discrepancy D)(k2 are 
established. The second section contains several auxiliary results. The main 
results are given in the third section. Their proof is based on a thorough evalu- 
ation of certain exponential sums. The reader is referred to [ 13] for background 
material on this topic. In the fourth section the behavior of explicit inversive 
congruential generators under the serial test is discussed. 

2. AUXILIARY RESULTS 

First, some further notation is necessary. For integers k > 1 and q > 2, let 
Ck(q) be the set of all nonzero lattice points (h1, ..., hk) E Zk with -q/2 < 

hj <q/2 for 1 <j<k. Define 

(1 for h =0, 
r(h q) = q sin 7 [h for h e C1 (q), 

q 

and 
k 

r(h, q) = fi r(hj, q) 
j=l 

for h = (hl, ..., hk) e Ck(q). For t e R and integers a > 1 and z, the 
abbreviations e(t) = e2nit and x,(z) = e(z/2a) are used, respectively. Let u*v 
stand for the standard inner product of u, v e Rk . 
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Below, three known general results for estimating discrepancies are stated. 
The first two lemmas follow from [19, Theorem 3.10 and Corollary 3.17] and 
the third lemma can be deduced from [14, Lemma 4]. 

Lemma 1. Let N > 1 and q > 2 be integers, and let t_ = q-I Yn e [O, 1)k with 
Yn e zk for 0 < n < N. Then the discrepancy of the points to, t1, ..., tN-I 

satisfies 

k 1 1 ~~~~N- I 
DN(to tl,...,t) < q +- r(h, q) 5e(h.tn) q NhECk(q) n=_ 

Lemma 2. The discrepancy DN = DN(tO, tl, ..., tNy-) of N arbitrary points 
to, tl, ..., tN-1 e [O, l)k satisfies 

N-i r+ 

Z e(h * tn) 7 ( 2 21 NDN H max( , 21hj ) 
n=O = 

for any nonzero lattice point h = (hi, ..., hk) e Zk, where / denotes the number 
of nonzero coordinates of h. 

Lemma 3. Let q = 2a for some integer a > 1. Then 

1 11 3 

hE(q) r(h,q) <- gq 5 
h--I (mod 2) 

In the following, for a fixed integer a e Zm with a _ 2 (mod 4) , the mapping 
q = (q1, q2): Z2 Z2 is defined by 

0(y, z) = ((ay + 1)(az + 1), y - z). 

For integers a > 3 let 

Na{ = (s, t) E Z22 t = O (mod 2), s --2t + 1 (mod 8)}. 

Observe that 0(y, z) (mod 2a) e Na for' odd integers y and z. The following 
technical result is used later on in the proof of Lemma 5. 

Lemma 4. Let (s, t) e Na for some integer a > 3. Then there exists exactly 
one (y, z) e Z a_2 X Z*o, with 

0(y, z) - (s, t) (mod2a). 
Proof. For integers a > 3 and (s, t) e Na , let 

Ma(s5 t) = {(Y Z) e Z% x Z% I ?(y, z) _ (s, t) (mod2a)}. 

Below, it is proved by induction on a > 3 that for (s, t) e Na the set Ma (s, t) 
contains exactly four elements, and that any two elements (y, z), (y', z') e 
Ma(s, t) satisfy (y, z) -(y', z') +2a-2(2, (A) (mod2a) for some A e 74. This 
statement is equivalent to the assertion of Lemma 4, since 

q(y + 2a-2 z + 2a-2) q 0(y, z) (mod 2a) 

for integers y and z. 
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For a = 3 the above statement can be shown by inspection. Now, assume 
that it is valid for some integer a > 3. Let (s, t) e Na+i be fixed. Then 
(s, t) (mod 2a) e Na and the assumption implies that there exists an element 
(ya, Za) e Za x Z*a with O(Ya, Za) (s, t) (mod 2a). Hence, 

0(ya , Za) -(s, t) + 2a(&, t) (mod2a+1) 

with suitable s, t e Z2. In the following, let (Y, Z) E Z,,+, x Z*a+1 be an 
arbitrary element. It suffices to consider the case (y, z) (mod 2a) e Ma(S, t), 
since otherwise (y, z) cannot belong to the set Ma+I (s, t) . Therefore, by the 
assumption, (y, z) (Ya, Za) + 2a-2(A, ,A) (mod 2a) with a suitable A e 74. 

Hence, one obtains 

(Y Z)(ya!,Za!)+a-2( )+a(y ) mda+1) 

with suitable y, z e Z2. A short calculation shows that 

q(Y, z) (Ya + 2 + 2 Za + 2a2)& +2 

= 0(Yaa, Za) + 2a( , yz) 

_ (s, t) + 2a(A + , y - + ) (mod2a+1). 

Therefore, an element (y, z) e Za+, x Z*a+, belongs to Mal+1 (s, t) if and only 
if + - - + tO (mod 2), which is equivalent to y + i (mod 2) and 
A = s + 2) with a suitable ) e Z2. Hence, 

(Y Z) (Ya + 2a2 Za + 2a2 + 2a) + 2a 1()',).) (mod2+), 

where A' = A + 2P E Z4 . Consequently, the set Ma+ I (s, t) contains exactly four 
elements, and any two elements (y, z), (y', z') e Ma+i(S, t) satisfy (y, z) 
(y', z') + 2a-1(A, A) (mod2a+1) for some A e Z4, which yields the desired 
result. 5 

A crucial role in the present paper is played by certain exponential sums, 
which are defined by 

S(u, v; 2a) Xa(UZ-1 +v(z+al)-) 
ZEZ*2c 

for integers u, v, and a > 1, where a e Zm with a _ 2 (mod4) is fixed. 
Some relevant properties of these exponential sums are collected in Lemma 5. 

Lemma 5. Let u, v, and a > 2 be integers. 
(a) If u+v_ 1 (mod2), then S(u, v; 2a)= 0. 
(b) If u v _ (mod2), then S(u, v 2a) = 2S(u , I ; 2a-1) 
(c) If u v 1(mod2) and a > 5, then 

v2(a+2)/2 for u + v O (mod 8), 
JS(u, v 2a)l 0 for u $ v0 (mod 8). 



EXPLICIT INVERSIVE CONGRUENTIAL PSEUDORANDOM NUMBERS 791 

Proof. (a) A short calculation shows that 

S(u,v;2a)= Z (Xoa(uz-1+v(z+a)-Y) 
zEZ* 

+ Xa(U(Z + 2a-1)-I + v(z + a + 2a-1)) 

- Z za(UZ1 +v(z+a)-1)(l+Xi(U+v)). 
zEZ* 

2a- 

Therefore, the desired result follows from XI (u+v) = -1 for u+v 1_ (mod 2). 
(b) Since XI(u + v) = 1 for u + v 0 (mod 2), it follows from part (a) of 

the proof that 

S(u, v; 2a) =2 Z aI(z+ (z + a)-) =2S (- ; 2a-1). 
zEZ* 

(c) First, the transformation y = z- (mod 2a) for Z E Z2XX yields 

S(u, v; 2a)= Z xa(uy+vy(ay+ 1)-1). 
YE*2a 

Hence, one obtains 

JS(u, v; 2a) 12 =S(u, v; 2a) _ S(u, v; 2a) 

= aX(U(y - z) + v(y(ay + 1) -z(az+ 1<')) 
y, zeZ2* 

- E Xa (02(Y, Z)(U+ (Vi(Y, Z))')), 

y, zEZ*2a 

where the mapping 0 = (q!I, 02) is defined as above. Since 

q(y + 2a-2 z + 2a-2) = q(y, z) (mod 2a) 

for integers y and z, it follows, together with Lemma 4, that 

JS(u, v; 2a)12 = 4 E Xa (02 (Y, z) (u + V(0(Y, Z))- 

(y, Z)EZ* xZ* 
2a 2 2a 

= 4 Xa(U2+ VS-I)) =4(2: +Y 2) 
(s, t)EN, 

where the abbreviations 

11 = Xat(U + VS-,)) 
SEZ2a tEZ2a ( 

s--I (mod8) t_0 (mod4) 

and 
12 = y Xa(t(U + VS-,)) 

SEZ2a tEZ2a 
s-5 (mod8) t_2 (mod4) 

are used. Straightforward calculations show that 

S1 = 4 E 2a!-2 2a for u + v _ (mod 8), 
sEZ2-2 t 0 for u +v O (mod 8) 

s= 1 (mod 8) 
u+vs-=-O (mod2a2) 
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and 

2= 2 Z Z (Xa-i(T(u + vs1)) + Xa-i(T(U + v(s + 2 a2) 1))) 

SEZ2a-2 TEZ*1 

s_5 (mod 8) 

=2 E Z xa_I(T(u+vS-))(I +xl(l)) = 0, 
SEZ2a-2 TEZ*- 

s-5 (mod 8) 

which completes the proof. 5 

Finally, another exponential sum is defined by 

G(u, v; 2a) = Z Xa (Uy2 + Vy) 

YEZ2a 

for integers u, v, and a > 1. The following result can be deduced from [10, 
Lemma 6]. 

Lemma 6. If u, v, and a > 1 are integers with gcd(u, 2a) > gcd(v, 2a), then 
G(u, v; 2a) = 0. 

3. BOUNDS FOR THE DISCREPANCY 

Theorem 1. The discrepancy D (2) of any explicit inversive congruential gener- 
ator with power of two modulus m satisfies 

D(/ < - (4 + )m-2 /2 ( o + 3 + 4m-1. m/2 7 7 

Proof. First, Lemma 1 is applied with k = 2, N = m/2, q = m, and t, =x 

for 0 < n < m/2. This yields 

2 2 1 m/2-1 
m/2?rM+MI: r(h ,m) _e(x) 

hEC2(m) rn= 

2 2 1 m/2-1 

m m hEC2(m) r(h, m) ( aa 

2 2 1 
Y + E IS(hi, h2; M)I 

m m hE r(h) r (h m2 

h=O (mod 2-l) 

2 
(-2 

c a=O hEC2(m) ( m) 
gcd(h, , h2, m)=2' 

4 1 2~ (0 1 

m+ m2 a=O gEC2(2a) r(2ag, m) S(2ag1, 2ag2; m)I 
gcd(g1, g2, 2)=1 
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Now, Lemma 5 can be used in order to obtain 

4 1 2co-2a I7 

m2< m+ +m r(2ag, m) S(gi, g2; )[ 
gcd(gi, g2, 2)=1 

m + + m 2 
a 

IS(gi, g2; 2W-a)I 
m m ~a=O gEC2(2w0a) r(2ag, M) 

gl--g2--1 (mod 2) 

+ m2+ E 2 Z IS(g, g2 2C9-a) m m 
a=O 9~E C2 (2wa) r(g , 2co-a) 

g=-g2-=1 (mod 2) 

4 1 2 co-2I 
+ + + - 

@ E2 -Z+(o-a+2)/2 g 2 
m m 

a=O 9EgEC2(2 rga) ( ) 

gl=-g2=1 (mod2) 
2 

4 1 4 c-2 1 - + 2+ 2Z2(- a/ 
= 4 + 12 + M1/2 E 2 ( ,,, ) r(g, 2coa) 

a=O 9~ECI (2W0a) 
g-1 (mod2) 

Finally, it follows from Lemma 3 that 

2) 4 1 4 Wc- a2 /1 3,a\32 
Dm/2 < m + m2 + m1 /2- g 2 

a=O 

4 4 3a/2 /1 ,- + 3 
< + rn1'/2 

E 23a/2 log 2W + 

< + 4 (1 logm + ) 2-3a/2 rnm1/2 \jr5]L5 

4 8(4 + Vf2) (1 3 2 - 1/2 - logm +-j 
m 7m1/275/ 

Theorem 2. The discrepancy D)(2) of any explicit inversive congruential gener- 
ator with power of two modulus m satisfies 

D (2)2 2 m -1/2. 
m/2->7r+ 2 

Proof. First, Lemma 2 is applied with k = 2, N = m/2, tn = x, for 0 < n < 
m/2, h =(1, -1), and hence 1 = 2. This yields 

m/2-1 

e e(h * x, ) < (7r + 2) mD (2)2 

n=O 

Now, it follows as in the proof of Theorem 1 that 
m/2-1 

E e(h Xn) =nISO=O-I;M)I 

n=0 
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Finally, an application of Lemma 5(c) shows that JS(1, -1; M)l = 2m /2 

which yields the desired result. E1 
In the following, let w = 3v + 2 + ,u with suitable integers v > 1 and 

,u E {0, 1, 2}, and put 

{J1 forMue{0, 1}, 

2 for u = 2. 

Theorem 3. The discrepancy D k)2 of any explicit inversive congruential gener- 
ator with power of two modulus m satisfies 

D(k) > 2(u- 1)/3 -/ 
m/2 - 27)A3(7c2 + 37r + 3) m 

for all dimensions k > 3. 

Proof. First, Lemma 2 is applied with N = m/2, t, = x, for 0 < n < m/2, 
h = A(1, 2, -27, 0, ...., 0) E Zk, and hence 1 = 3. This yields 

m/2-1 

E e(h * Xn) < 543(2+ 37r + 3)mDm/2. 
n=O 

A short calculation shows that 
m/2-1 m/2-1 

E e(h *xn) = Z xO(A((an + b)-1 +2(an + b + a)-1 -27(an + b + 2a)-1)) 
n=O n=O 

- Z x(>y1 + 2(y + a>' - 27(y + 2a)-1)) 
YEZm 

=E XZo(AR(z)), 
zEZm* 

where the function R: Z* -- Zm is defined by 

R(z) z + 2z(az + 1)-i - 27z(2az + 1)-i (mod m). 

Next, observe that 

R'(z) 1 + 2(az + l)-2 - 27(2az + l)-2 (modm) 

and 
R"(z) 4a(27(2az + l)- (az + 1)-) (modi). 

Since A23v+3 = 0 (mod m), it follows after straightforward, but tedious, calcu- 
lations that 

1: Xt(O(R(z)) = Xco(AR(x +2vy)) 
zEZ* xEZ* YEZ2@- 

= Z Z XG'(A(R(x) + 2vR'(x)y + 22v-lRII(x)y2)) 
xEZ* yEZ20-, 

= Z X,W(tR(X))G(2v 1AR"(x),) AR'(x); 20-v). 
xEZ*2v 

Now, a short calculation shows that 

R'(x) - 2(ax + 2)2(2a2X2 - 2ax - 3)(ax + 1)-2(2ax + 1)-2 (modm) 
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and 

R"(x) _ 4a(ax + 2)(19a2x2 + 31ax + 13)(ax + l)-3(2ax + i)-3 (modm) 

for x e Z*. In the following, let x e Z*, be fixed and define an integer 
4 e {2, 3, ..., v + 1} by gcd(ax + 2, 2v+l) = 24 . Since 2a2x2 -2ax-3 
1 (mod 2) and 19a2x2 + 3lax + 13 1_ (mod 2), it follows that 

gcd(AR'(x), 2w') - 2min(24+A, o-v) 

and 
gcd(2v-,AR" (x), 2O0-v) - 2min(v+4+)+ ,w-v) 

If < vv, then 2+ A < v + +A+ 1 < - v, and Lemma 6 implies that 

G(2v-lAR11(x)), 1R'(x); 2w0-v) = 0. 

If v = v + 1, then AR'(x) 2v-lIARII(x) 0_ (mod 20-v), and hence 

G(2vl,IR" (x), AR'(x); 2wv-v) = 2-v. 

Since there exists exactly one x e Z*v with ax + 2 0 (mod 2v+), i.e., 4 = 

v + 1, one obtains 

Z xc((AR(z)) = 2-v. 
zEZm 

This yields 

D (k) > 2wOv _ 2(IL- 1)/3 -/ 
m/2 - 54)A3(7l2 + 37r + 3)m 27A3(7r2 + 37r + 3) 

for all dimensions k > 3. E1 

4. CONCLUSIONS 

Theorem 1 shows that D 2) = O(m-1/2(logM)2) for any explicit inversive 

congruential sequence, where the implied constant is absolute. It should be ob- 
served that this bound is independent of the specific choice of the parameters 
a (and b) in the explicit inversive congruential method. Theorem 2 implies 
that the upper bound is best possible, up to the logarithmic factor, since the dis- 
crepancy D (2) of any explicit inversive congruential generator has an order of 

m/2 
magnitude at least m-1/2 . Hence, Theorems 1 and 2 show that the discrepancy 
Dm2) is in accordance with the law of the iterated logarithm for discrepancies. 

m/2 
In this sense, explicit inversive congruential pseudorandom numbers behave like 
true random numbers. 

However, Theorem 3 implies that any explicit inversive congruential sequence 
fails the serial test for all dimensions k > 3, since the corresponding discrep- 
ancy DM)2 is of an order of magnitude at least m-1/3. Consequently, an upper 

bound for the discrepancy Dq(k2 with k > 3, which is basically in accordance 
with the law of the iterated logarithm, cannot be obtained, since the order of 
magnitude m-1/3 is already too large. This behavior of the explicit inversive 
congruential method with power of two modulus is a serious disadvantage com- 
pared to the situation for a prime modulus, where the discrepancy of k-tuples 
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fits to the law of the iterated logarithm for any dimension k > 2 (cf. [7, 21, 
22]). 
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